STATISTICAL CALCULATION OF THE GECMETRICAL
FACTORS IN RADIANT TRANSFER

V. P. Fotin and F. R. Shklyar UDC 536.3

A method is proposed for calculating the generalized geometrical factors in radiant transfer
for a system of second-order surfacesboundedby their lines of intersection.

The use of Monte Carlo methods to determine the geometrical factors in radiant transfer has been
described by Howell and Perlmutter [5], and the application of those methods to the generalized geometrical
factors for a system of plane surfaces has been discussed in [1]. In the present article we give a more gene-
ral algorithm for determining the generalized geometrical factors (i.e., on the assumption that the emitters
are black bodies), permitting the results of the calculations to be used to immediately determine the geo-
metrical factors between all surfaces comprised in a system, even when they have complex shapes and
boundaries (specifically, those described by second-order equations). The subsequent determination of
the solving generalized geometrical factors does not in itself present any difficulty [2].

The proposed method can be likened to the following physical experiment. Let us consider the
determination of the average geometrical factors. Suppose that the investigated system of surfaces
is enclosed in a spherical black shell. In thermodynamic equilibrium the emission into the interior
of the sphere is isotropic. Let us imagine that the investigated surfaces are perfectly transparent.
This supposition does not effect any changes in the radiant energy distribution in the interior. It
is now readily apparent that the radiation transferred across each surface is "ideally diffuse" with
respect to the latter, i.e.; its intensity obeys the Lambert cosine law. Consequently, the emissive
source in the system is the inner surface of the sphere. Were it possible to pinpoint random rays,
it would then be possible to find the average geometrical factor of the radiation from the i-th to the
j-th surface by determining a certain number of rays transmitted across the i-th surface (N;) and,
of that number, the number of rays transmitted across the j~th surface (Nij), using the following
relation:

Q5= N/N;. 1)
The accuracy of the computation of P45 increases with the number of rays that are registered.

The proposed Monte Carlo method is based on the mathematical formalization of the foregoing physical
experiment. For this stochastic model each elementary experiment entails the following. A ray is drawn
from a random point on the surface of the sphere inwardly in a direction whose probability corresponds to
the cosine law (Lambert emission law). If the ray intersects the i-th surface, the number Nj is increased
by one, If the ray also crosses the j-th surface, Njj is increased by the amount exp(—Ki), where K is the
average absorption coefficient of the medium over the ray path ! between the surfaces. If a large number
of elementary experiments is performed, a computation according to (1) yields a result close to ¢ij.

Before continuing, we show that the emission from the sphere into its interior is isotropic if the
emission from the surface of the sphere obeys the Lambert law. Thus, the radiant flux across a plane
surface element arbitrarily situated and oriented in the interior of the sphere does not depend on its posi-
tion, because the geometrical factor from it to the spherical surface is equal to unity. Thus, regardless
of the position of the elementary area, it is "intercepted by an equal number" of rays. Each surface ele-
ment, on the other hand, "emits" the same number of rays, whose distribution with respect to the directions
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relative to the given element obeys the Lambert cosine law. The algorithm used to compute the geometrical
factors involves the following operations:

1. Designate the equations of the surfaces. Enclose the investigated volume in a sphere S of radius
p. The radius of the sphere must be made as small as possible so that the investigated volume will fill up
the maximum possible fraction of the sphere interior. It is noted that this observance will reduce the num-
ber of elementary experiments, because there will be fewer "idle" rays, i.e:, rays that do not intersect
any of the investigated surfaces.

2. Select a ray at random.

3. Determine the points of intersection, providing they exist, of the ray and a surface in the domain
of existence of each surface.

4. Vary Nj and Njj when the ray intersects the i-th and j-th surfaces, respectively. Repeat operations
2, 3, and 4 N times., The higher the computational accuracy required, the larger must be the number N.

5. Determine the generalized geometrical factors from Eq. (1).

1. The equation for a second-order surface

4
2 Ay =0 (=1, 4;; = 4;)
1

[ =
can be specified by designating the ten coefficients Ajj(j = i) or the coordinates of ten points of the surface.

In the latter case the unknown coefficients Ajj of the approximating surface are found by solving the
system of nine linear homogeneous equations

4
D Axaxp =0 (=1, Ay =4y), (2)

if=1
in whichk =1, 2, ..., 9enumerates the points on the surface with coordinates (Xik, X9k, ng) in order.

The system (2) contains ten unknown coefficients. Inasmuch as the system is homogeneous, it can
be used to find the ratios of all the coefficients to one coefficient picked at random. We choose Ay, for the
reference coefficient, i.e., we put Ay, =1, For the same surfaces for which in the given coordinate system
Ay =0 (.e., the determinant of the system is equal to zero) we find the coefficients Ajj of the equation
for the surface in the new coordinate system

X = Xy + &
and we then transform them for the old coordinate system:

A=A Ay =0,

“ (3)
A= =D Ak M, j=1,2 3)
=t

Here the £; are arbitrary numbers. Bearing the foregoing remarks in mind, we choose the sphere S for a
cube so that the latter is exactly inseribed by it.

2. The selection of a ray at random is equivalent to the selection of a point at random on the surface
of the sphere "p" and the selection of a ray directica,

To determine the coordinates of a random roint (xyy, %, X3 ) on the surface of a sphere S of radius
p with center at the point (xq9, X9, X3p) it must be taken into account that the density of those points on the
surface has to be constant. This means that for a large number of random points their concentration on
a surface element dS must be proportional to the value of dS, where

dS = p%sin 848dp = — p?d cos 8dp.
Here B and 0 are the longitude and polar distance (—r <8 <7, 0 <6 <7, —1 <cos 8 <1). Hence it is clear
that if we choose the coordinates of the random point from the set of values &y =B/7 and cos 6 = £, in the

interval (1, —1), then for a large number of experiments the points will be uniformly distributed over the
surface of the sphere. Thus, 6 = cos! &5, and the Cartesian coordinates of the point are
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Xy = psinBcos P + x; = psin (Arccos &) - cos nE; 4 Xy
=pV 1—&, cosa; -+ x5
Kyy = 0SINOSING + xp = P [—EysinnE; -+ x5
Xg = pcost = pE, + xg,.
The foregoing result can be interpreted as a uniform spatial distribution of rays emitted by the point
0 or as the equiprobability of any ray in any direction. Bearingthisremark in mind, we determine the
random direction of a ray emanating from a point (xy1, Xy, Xz) in the interior of the sphere. We adopt
that point as the origin of a new coordinate system X}X;X} and enclose the point (X, Xy, Xg) in a unit
sphere. Let the X} axis coincide with the normal to dS, and let the X; and X, axes be mutually perpendicular
thereto. Bearing in mind the remark made above, we infer that in order to determine the directions of the
random rays, the density of-whose traces‘on the surface of the unit sphere (or in space) must obey the cosine
law, the coordinates 8' and-8' must be selected at random from the set £, = f'/7 in the interval (-1, 1) and

cos’0'= &, in the interval (0, 1). Thus, 6' = sin~!vg,, and the coordinates on the surface of the unit sphere
of the point through which the ray passes are

Xy, = sin § cos g, = sin Arcsin V&, cos nE, = ¥ &g cos ay;
Xpp = ¥ Eysin mfy;
Xy = VI— &

The new coordinate system (X{, X}, X3) is obtained by rotation and parallel translation of the old
axes.  We find the coordinates (x{,, X3y, X35/ in the old coordinate system. In matrix notation

(%y9XanXan) = (X X5g Xa0) M+ (X11Xp1¥31)s
where M is the matrix of axis rotations 7
|| —g cosmg,; sinagy; 3 T— g cos mE,
—g,sinng,; —coswk; 31— EsinnE,
VI—% 52, 0; &,

for which the elements of each column are the direction cosines of the new axes (X{, X5, X3) in the old
coordinate system X;, X,, X3;. The third column contains the components of the normal vector to the sphere
at the given point. The zero asserts the condition of perpendicularity of the axes X; and Xj. The remaining
elements of M are obtained with allowance for the properties of the transformation determinant for rota-
tion of the axes. '

3. The point of intersection of the ray and a surface is found by solving the system of equations for
the surface and the ray through the points (xyy, Xp, Xy) and Xy, Xgp, X3o)t

s .
2 Aypxx; =0, (4)
if

(=2 3).
Xy — Xqg _ X;j— Xy

(5)

X —Xu  Xp—Xp
Solving the given system, we find the coordinates of the point of intersection (%, x,, x3).

It can happen that not every point of intersection of a surface and a random ray is situated in the in-
vestigated domain (i.e., the domain of existence of the surface).

The positions of the points are verified by means of check points, i.e., points that lie inside the
sphere S and are such that only the domain of existence of one or more surfaces is visible from them; points
lying outside the check-point domain, on the other hand, are not visible, i.e., they are shadowed. The
surfaces in this case are considered to be nontransparent. For example, a suitable check point for a cube
is a single point located inside the cube. All inner surfaces of the faces of the cube are visible from that
point, whereas points situated on planes coplanar with, but exclusive of the face are not visible from the
given check point. Consequently, to verify the position of the point of intersection of a ray with a.surface
it is required to ascertain whether that point is visible from a check point or whether it is shadowed from
it, If it is visible from the check point, the random ray intersects the surface in the domain of existence
of the latter, otherwise the point of intersection lies outside the investigated part of the surface.
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TABLE 1. Generalized Geometrical Factors in Radiant Transfer for
the Faces of a Cube

, . Generalized geornetrical factor
Relative Averagis absg);pnon maximum devia- | Number of elemen-
posttion of - coefficient of from data of [3, 4Jjtion by proposed |tary experiments
faces . medium technique
0,055 110
0,066 225
0,021 767
0 0,200 0,012 1148
=S 0,009 8161
8 0,004 10561
g 0,004 12105
2 0,004
0,5 0,1539 0,004
0.0827 0,004 12524
0 0,2000 0,003
. Opposite ) 0.5 0,1149 0,001
2 0,0221 0,0004

For the verification procedure a straight line is drawn through the check point and the point of inter-
section with the ray, and the points of intersection of that line with the surfaces of the system are found;
then it is determined whether some point of intersection lies between the check point and the point of inter-
section with the ray. Otherwise the logic involved is self-evident. If there are several check points (as
in a complex system), the verification procedure is carried out from each check point. A point of inter-
section lies in the domain of existence if it is visible from at least one check point.

The execution of operations 4 and 5 of the algorithm does not require any explanation. The algorithm
was implemented on a Minsk-22 digital computer. A comparison of the results of calculating the geometri-
cal factors for the most typical cases of radiant heat transfer with the established data [4, 3] indicates
satisfactory agreement at a reasonable computation time. Selected comparisons of the results from calcu-
lations of the geometrical factors for a cube whose interior is filled with an absorbing medium with the data
of [1, 3] are made in Table 1.

Each of the deviations given in the table is the maximum of the deviations occurring for a particular
face of the cube for a given number of experiments. The computation time for real systems of second-or-
der surfaces (six to ten surfaces) with engineering accuracy is a few hours.

NOTATION
Xy, X9, X3  are the coordinates of a point;
4 is the length of a straight-line segment;
p, B, 0 are the radius, longitude, and polar distances, respectively, in spherical coordinates;
N is the number of rays;
¢ is a random number;
Ajj represents the coefficients of the surface equation;
?ij represents the generalized geometrical factors;
K is the average absorption coefficient of the medium,

LITERATURE CITED

1, S. D. Dreizin-Dudchenko and A. E. Klekl’, in: Collected Scientific Papers of VNIPIChermetenergo-
ochistka [in Russian], No. 11-12, Metallurgiya (1968).

2, Yu. A. Popov and F. R. Shklyar, Inzh. Fiz. Zh., 13, No, 3 (1967).

S. P. Detkov and A. V. Vinogradov, Internat, J. Heat and Mass Transfer, 2, 191-200 (1968),

4, S. 8. Kutateladze and V. M. Borishanskii, Heat-Transfer Handbook {in Russian], Gosenergoizdat
(1969).

5. J. R. Howell and M, Perlmutter, Trans. ASME, Ser, C:J. Heat Transfer, 86, No. 1, 116-122; No.
2, 168-179 (1964). o

w

1565



