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A method is proposed for calculat ing the genera l ized  geomet r i ca l  f ac to r s  in radiant  t r a n s f e r  
for  a sys t em of s econd -o rde r  su r faces  boundedby their  l ines of in tersect ion.  

The use of Monte Car lo  methods to de te rmine  the geomet r i ca l  f ac to r s  in radiant  t r a n s f e r  has been 
desc r ibed  by Howell and P e r l m u t t e r  [5], and the application of those methods to the genera l ized geomet r i ca l  
f ac to r s  for  a sy s t em  of plane su r faces  has been d iscussed  in [1]. In the p resen t  ar t ic le  we give a more  gene-  
r a l  a lgor i thm for de termining  the genera l ized  geomet r i ca l  f ac to r s  (i. e . ,  on the assumpt ion  that the e m i t t e r s  
a re  b lack  bodies) ,  permi t t ing  the r e s u l t s  of the calculat ions to be used to immedia te ly  de te rmine  the geo-  
m e t r i c a l  f ac to r s  between all su r faces  compr i s ed  in a sys t em,  even when they have complex shapes  and 
boundar ies  (specif ical ly,  those descr ibed  by s econd -o rde r  equations).  The subsequent de te rmina t ion  of 
the solving genera l ized geomet r i ca l  f ac to r s  does not in i t se l f  p resen t  any difficulty [2]. 

The proposed  method can be likened to the following physical  exper iment .  Let us consider  the 
de terminat ion  of the average  geomet r i ca l  fac tors .  Suppose that the invest igated sy s t em of su r faces  
is enclosed in a spher ica l  b lack  shell .  In the rmodynamic  equi l ibr ium the emis s ion  into the in te r ior  
of the sphere  is i so t ropic .  Let  us imagine that the invest igated su r faces  a re  per fec t ly  t ransparen t .  
This  supposition does not effect  any changes in the radiant  energy  distr ibution in the in ter ior .  It 
is now readi ly  apparent  that the radiat ion t r a n s f e r r e d  a c r o s s  each  sur face  is "ideally diffuse" with 
r e s p e c t  to the la t t e r ,  i . e .  ,~ i ts  intensi ty obeys the L a m b e r t  cosine law. Consequently,  the emis s ive  
source  in the s y s t em  is the inner sur face  of the sphere .  Were it poss ible  to pinpoint random r a y s ,  
it would then be possible  to find the average  geomet r i ca l  fac tor  of the radiat ion f rom the i - th  to the 
j - th  surface  by de te rmin ing  a ce r ta in  number  of r ays  t r ansmi t t ed  ac ro s s  the i - th  sur face  (N i) and, 
of that number ,  the number  of r ays  t r ansmi t t ed  a c r o s s  the j - th  sur face  (Nij) , us ing the following 
relat ion:  

%j  -= N~j/N~. (1) 

The accuracy  of the computat ion of r i n c r e a s e s  with the number  of r a y s  that a re  r eg i s t e r ed .  

The proposed Monte Car lo  method is based  on the ma themat i ca l  fo rmal iza t ion  of the foregoing physical  
exper iment .  Fo r  this s tochast ic  model  each  e l emen ta ry  exper imen t  enta i l s  the following. A r ay  is drawn 
f r o m  a r andom point on the surface  of the sphere  inwardly in a d i rec t ion whose probabi l i ty  co r re sponds  to 
the cosine law (Lamber t  emi s s ion  law). If the ray  in t e r sec t s  the i - th  su r face ,  the number  N i is inc reased  
by one. If  the r ay  also c r o s s e s  the j - th  su r face ,  Nij is i nc reased  by the amount exp( - -K/ ) ,where  K is  the 
average  absorpt ion coefficient  of the medium over  the ray  path l between the su r faces .  If  a large number  
Of e l emen ta ry  expe r imen t s  is p e r f o r m e d ,  a computat ion according to (1) y ie lds  a r e su l t  c lose to ~0ij. 

Before  continuing, we show that the emiss ion  f r o m  the sphere  into i ts  in te r ior  is i so t ropic  if the 
emi s s ion  f rom the surface  of the sphere  obeys the Lamber t  law. Thus,  the radiant  flux a c r o s s  a plane 
sur face  e lement  a rb i t r a r i l y  si tuated and oriented in the in te r ior  of the sphere  does not depend on i ts  pos i -  
t ion, because  the geomet r i ca l  factor  f rom it to the spher ica l  sur face  is equal  to unity. Thus ,  r e g a r d l e s s  
of the posit ion of the e l emen ta ry  a r ea ,  it is " in tercepted by an equal  number"  of r ays .  Each surface  e l e -  
ment ,  on the other  hand, "emi t s"  the same number  of r a y s ,  whose distr ibution with r e s p e c t  to the d i rec t ions  
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relat ive to the given element obeys the Lambert  cosine law. The algori thm used to compute the geometr ical  
fac tors  involves the following operat ions:  

1. Designate the equations of the surfaces .  Enclose the investigated volume in a sphere S of radius 
p. The radius of the sphere must be made as small  as possible so that the investigated volume will fill up 
the maximum possible fraction of the sphere inter ior .  It is noted that this observance will reduce the num- 
ber  of e lementary  exper iments ,  because there will be fewer "idle" r ays ,  i . e : ,  rays  that do not in tersect  
any of the investigated surfaces .  

2. Select a ray  at random. 

3. Determine the points of intersect ion,  providing they exist ,  of the ray  and a surface in the domain 
of existence of each surface.  

4. Vary N i and Nij when the ray  in tersec ts  the i - th  and j-th surfaces ,  respect ively.  Repeat operations 
2, 3, and 4 N t imes.  The higher the computational accuracy  required,  the l a rge r  must be the number N. 

5. Determine the general ized geometr ica l  factors  f rom Eq. (1). 

1. The equation for a second-order  surface 

4 

Aux~x ~ = 0 (x4 = 1, A u = As~ ) 
i,]=l 

can be specified by designating the ten coefficients Aij (j -> i) or the coordinates of ten points of the surface.  

In the lat ter  case the unknown coefficients A ij of the approximating surface are found by solving the 
sys tem of nine linear homogeneous equations 

4 

X Auxihxi~ = 0 (x4~ = 1, A u = Aji), (2) 
i]=l 

in which k = t ,  2 . . . . .  9 enumera tes  the points on the surface with coordinates  (Xlk , X2k , X3k) in order .  

The sys tem (2) contains ten unknown coefficients.  Inasmuch as the sys tem is homogeneous, it can 
be used to find the ra t ios  of all the coefficients to one coefficient picked at random. We choose A44 for the 
re fe rence  coefficient,  i . e . ,  we put A44 = 1. For  the same surfaces  for which in the given coordinate sys tem 
A44 = 0 (i. e . ,  the determinant  of the sys tem is equal to zero) we find the coefficients Aij of the equation 
for the surface in the new coordinate sys tem 

x)k = xjh + ~:, 

and we then t r ans fo rm them for the old coordinate sys tem:  

�9 A~j = AI:, A4r =0, 

4 (3) 
Ai4 = - - Z A u ~ :  (i, ] = 1, 2, 3). 

i=i 

Here the ~j are a rb i t r a ry  numbers .  Bear ing the foregoing r emarks  in mind, we choose the sphere S for a 
cube so that th~ lat ter  is exactly inscr ibed by it. 

2. The selection of a ray  at random is equivalent to the selection of a point at random on the surface 
of the sphere "0" and the selection of a ray  direct ica.  

To determine the coordinates  of a random r ~int (xil, x21, x31) on the surface of a sphere S of radius 
0 with center  at the point (Xlo, Xzo, xao) it must  be taken into account that the density of those points on the 
surface has to be constant.  This means that for a large number of random points their concentration on 
a surface element dS must  be proport ional  to the value of dS, where 

dS = 92 sin OdOd~ = - -  92d cos Od[3. 

H e r e ~  and0  are  the longitude and polar distance (--Tr <fl <Tr, 0 < 0  <Tr, --1 < c o s 0  <1).  Hence it i s c l e a r  
that if we choose the coordinates  of the random point f rom the set of values }l = fl/rr and cos 0 = }2 in the 
interval  (1, --1), then for a large number of exper iments  the points will be uniformly distributed over the 
surface of the sphere.  Thus, 0 = cos -1 }-2, and the Car tes ian coordinates of the point are 
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x n = p sin 0 cos 13 + xl0 = 9 sin (Arccos ~).  cos n~ i+  xi0 

= 9 I f  1-- ~ cos ~ i  -? Xio; 

x~l = 9 sin 0 sin [3 + x~0 = p ~' 1--  ~ sin ~ l  - -  x20; 

x3~ pcos0 == p~2+x30. 

The  f o r e g o i n g  r e s u l t  can  be i n t e r p r e t e d  as  a u n i f o r m  s p a t i a l  d i s t r i b u t i o n  of  r a y s  e m i t t e d  by the poin t  
0 o r  a s  the e q u i p r o b a b i l i t y  of any r a y  in any d i r e c t i o n .  B e a r i n g  th is  r e m a r k  in mind ,  we d e t e r m i n e  the 
r a n d o m  d i r e c t i o n  of  a r a y  e m a n a t i n g  f r o m  a point  (xll ,  x21, x3~) in the i n t e r i o r  of the s p h e r e .  We adopt  
tha t  po in t  a s  the o r i g i n  of  a new c o o r d i n a t e  s y s t e m  ' ' ' X1X2X 3 and e n c l o s e  the poin t  (x n x2~, x a )  in a uni t  
s p h e r e .  Le t  the X~ ax i s  co inc ide  wi th  the n o r m a l  to dS, and l e t  the  X 3 a n d  X~ a x e s  be mu tua l ly  p e r p e n d i c u l a r  
t h e r e t o .  B e a r i n g  in m i n d  the r e m a r k  m a d e  above ,  we i n f e r  tha t  in o r d e r  to d e t e r m i n e  the d i r e c t i o n s  of  the 
r a n d o m  r a y s ,  the  d e n s i t y  of~whose t r a c e s  o n  the s u r f a c e  of the  unit  s p h e r e  (or  in space )  m u s t  obey the c o s i n e  
l aw,  the c o o r d i n a t e s  fl '  and  0! m u s t  be  s e l e c t e d  at  r a n d o m  f r o m  the s e t  ~4 = ~,/Tr in the i n t e r v a l  ( - -1 ,  1) and 
cos20 '=  ~3 in the i n t e r v a l  (0, 1). Thus ,  0 v = sin-14g3, and the c o o r d i n a t e s  on the s u r f a c e  of  the unit  s p h e r e  

of the poin t  t h rough  which  the r a y  p a s s e s  a r e  

x12 : sin 0' cos ~ 4  : sin Arcsin 1 / ~ .  cos ~ : y " ~  cos ~ ;  

x~ = V ~ sin ~ ;  

The  new c o o r d i n a t e  s y s t e m  (X 1 ' ' " , X2, X~) i s  ob t a ined  by  r o t a t i o n  and p a r a l l e l  t r a n s l a t i o n  of the o ld  
�9 ! ! 

a x e s .  We f ind the c o o r d i n a t e s  (xl~, x~a, x~2~ in the  old  c o o r d i n a t e  s y s t e m .  In m a t r i x  no t a t i on  

(x~x~x~) = (x~ x'~ x;~) M + (x.x~ix~O, 

w h e r e  M i s  the  m a t r i x  of ax i s  r o t a t i o n s  

- -  ~2 cos n~l; sin a~ ;  

-- ~ sin z~i; c o s  ~'1~1 ; 

- - 2  
] /1  - -  ~ 2 ;  0; 

2 "1 - -  ~2 cos n~i 

l, 1 - -  ~ sin z~l 

~- 

fo r  which  the e l e m e n t s  of e ach  co lumn  a r e  the d i r e c t i o n  c o s i n e s  of  the new a x e s  (X~, X~, X~) in the o ld  
c o o r d i n a t e  s y s t e m  X l ,  X 2, X 3. The  t h i r d  c o l u m n  c o n t a i n s  the c o m p o n e n t s  of  the n o r m a l  v e c t o r  to the  s p h e r e  
at  the g iven  point .  The  z e r o  a s s e r t s  the cond i t ion  of  p e r p e n d i c u l a r i t y  of  the a x e s  X 3 and X~. The  r e m a i n i n g  
e l e m e n t s  of M a r e  ob t a ined  with  a l l owance  fo r  the p r o p e r t i e s  of the t r a n s f o r m a t i o n  d e t e r m i n a n t  for  r o t a -  

t ion  of the a x e s .  

3. The  po in t  of i n t e r s e c t i o n  of the r a y  and a s u r f a c e  i s  found by  s o l v i n g  the s y s t e m  of e q u a t i o n s  fo r  

the  s u r f a c e  and the r a y  th rough  the po in t s  (x n ,  x2~, xat) and (x12, x22, x32): 
4 

A~F~x j = O, (4) 
q 

(] = 2, 3). 

x~ - -  x .  _ x i - -  x n ( 5 )  

X l ~  - -  X l l  Xi2 - -  X i j  

Solv ing  the g iven  s y s t e m ,  we f ind the c o o r d i n a t e s  of the poin t  of i n t e r s e c t i o n  (x 1 , x 2, x3). 

I t  can  happen  tha t  not  e v e r y  poin t  of i n t e r s e c t i o n  of a s u r f a c e  and a r a n d o m  r a y  i s  s i t u a t e d  in the i n -  
v e s t i g a t e d  d o m a i n  (i. e . ,  the d o m a i n  of e x i s t e n c e  of the s u r f a c e ) .  

The  p o s i t i o n s  of  the po in t s  a r e  v e r i f i e d  by  m e a n s  of c h e c k  po in t s ,  i . e . ,  po in t s  tha t  l ie  i n s ide  the 
s p h e r e  S and a r e  such  tha t  only the d o m a i n  of  e x i s t e n c e  of  one o r  m o r e  s u r f a c e s  i s  v i s i b l e  f r o m  them;  po in t s  
l y i n g  ou t s ide  the  c h e c k - p o i n t  d o m a i n ,  on the  o t h e r  hand,  a r e  not  v i s i b l e ,  i . e . ,  they  a r e  shadowed .  The  
s u r f a c e s  in th i s  c a s e  a r e  c o n s i d e r e d  to be  n o n t r a n s p a r e n t .  F o r  e x a m p l e ,  a s u i t a b l e  c h e c k  poin t  fo r  a cube 
i s  a s ing le  poin t  l o c a t e d  i n s ide  the cube .  A l l  i n n e r  s u r f a c e s  of  the f a c e s  of the cube a r e  v i s i b l e  f r o m  tha t  
po in t ,  w h e r e a s  po in t s  s i t u a t e d  on p l a n e s  c o p l a n a r  wi th ,  but  e x c l u s i v e  of the  face  a r e  not  v i s i b l e  f r o m  the 
g iven  c h e c k  poin t .  C o n s e q u e n t l y ,  to v e r i f y  the p o s i t i o n  of the  po in t  of  i n t e r s e c t i o n  of a r a y  wi th  a s u r f a c e  
i t  i s  r e q u i r e d  to a s c e r t a i n  w h e t h e r  tha t  po in t  i s  v i s i b l e  f r o m  a c h e c k  poin t  o r  w h e t h e r  i t  i s  shadowed  f r o m  
i t .  If  i t  i s  v i s i b l e  f r o m  the c h e e k  po in t ,  the r a n d o m  r a y  i n t e r s e c t s  the  s u r f a c e  in the d o m a i n  of  e x i s t e n c e  
of the l a t t e r ,  o t h e r w i s e  the  po in t  of  i n t e r s e c t i o n  l i e s  ou t s ide  the  i n v e s t i g a t e d  p a r t  of  the s u r f a c e .  
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TABLE 1. General ized Geometr ical  Fac to rs  in Radiant T rans fe r  for 
the Faces  of a Cube 

Generalized 
Relative '/Average absorption geometrical factor . Nmnber of elemen- ...... maximum devia- 
position of :oeffieient of from data of [3, 4]ltion by proposed ]tary experiments 
faces medium ttechnique ] __ 

,< 

Opposite 

0 0,200 

0,5 0,1539 
2 0,0827 
0 0,2000 

0,5 0,1149 
2 0,0221 

0,055 
0,066 
0,021 
0,012 
0,009 
0,004 
0,004 
0,004 
0,004 
0,004 
0,003 
0,00I 
0,0004 

110 
225 
767 

lt48 
8161 

10561 
12105 

12524 

For  the verif icat ion procedure a straight line is drawn through the check point and the point of in te r -  
section with the ray ,  and the points of intersect ion of that line with the sur faces  of the system are found; 
then it is determined whether some point of intersect ion lies between the check point and the point of in te r -  
section with the ray.  Otherwise the logic involved is self-evident.  If there are severa l  check points (as 
in a complex system),  the verif icat ion procedure  is ca r r i ed  out f rom each check point. A point of in te r -  
section lies in the domain Of existence if it is visible f rom at least one check point. 

The execution of operations 4 and 5 of the algori thm does not require  any explanation. The algori thm 
was implemented on a Minsk-22 digital computer .  A compar ison of the resul ts  of calculating the geometr i -  
cal fac tors  for the most  typical cases  of radiant heat t ransfer  with the established data [4, 3] indicates 
satisfactory, agreement  at a reasonable computation time. Selected compar isons  of the resul ts  f rom calcu-  
lations of the geometr ica l  fac tors  for a cube whose inter ior  is filled with an absorbing medium with the data 
of [1, 31 are  made in Table 1. 

Each of the deviations given in the table is the maximum of the deviations occur r ing  for a par t icular  
face of the cube for a given number of experiments .  The computation time for rea l  sys tems  of second-o r -  
der  surfaces  (six to ten surfaces)  with engineering accuracy  is a few hours.  

X1, X 2, X3 
l 
p,  f i ,  O 

N 

Aij 
g'i j 
K 

N O T A T I O N  

are the coordinates  of a point; 
is the length of a s t ra ight- l ine segment; 
are  the radius ,  longitude, and polar dis tances,  respect ively ,  in spherical  coordinates;  
is the number  of rays ;  
is a random number;  
r ep resen t s  the coefficients of the surface equation; 
r ep resen t s  the general ized geometr ica l  factors ;  
is the average absorption coefficient of the medium. 

1. 

2, 

3. 
4. 

5. 
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